1. Pengganda Decimal
10 1 | deka (da) | 10 -1 | deci (d) |
10 2 | hecto (h) | 10 -2 | centi (c) |
10 3 | kilo (k) | 10 -3 | milli (m) |
10 6 | mega (M) | 10 -6 | micro (u) |
10 9 | giga (G) | 10 -9 | nano (n) |
10 12 | tera (T) | 10 -12 | pico (p) |
10 15 | peta (P) | 10 -15 | femto (f) |
10 18 | exa (E) | 10 -18 | atto (a) |
2. Seri.
Maclaurin Series.
1. e x = 1 + x + x 2 / 2! + ... + x n / n! + ...
untuk semua x
2. sin x = x - x 3 / 3! + x 5 / 5! - x 7 / 7! + ...
untuk semua x
3. cos x = 1 - x 2 / 2! + x 4 / 4! - x 6 / 6! + ...
untuk semua x
4. ln(1 + x) = x - x 2 / 2 + x 3 / 3 -... + (-1) n+1 x n / n + ...
untuk (-1 < x <= 1)
5. tan x = x + (1/3) x 3 + (2/15) x 5 + (17/315) x 7 + ...
untuk (-Pi/2 < x < Pi/2)
6. arcsin x = x + (1/2) x 3 / 3 + (1.3/2.4) x 5 / 5 + (1.3.5/2.4.6) x 7 / 7 + ...
untuk (-1 < x < 1)
7. arctan x = x - x 3 / 3 + x 5 / 5 - ...
untuk (-1 < x < 1)
8. sinh x = x + x 3 / 3! + x 5 / 5! + x 7 / 7! + ...
untuk semua x
9. cosh x = x + x 2 / 2! + x 4 / 4! + x 6 / 6! + ...
untuk semua x
10. arcsinh x = x - (1/2) x 3 / 3 + (1.3/2.4) x 5 / 5 - (1.3.5/2.4.6) x 7 / 7 + ...
untuk (-1 < x < 1)
11. 1 / (1 - x) = 1 + x + x 2 + x 3 + ...
untuk (-1 < x < 1)
Arithmetic Series.
12. Sn = a + (a + d) + (a + 2d)+...+(a + [n-1]d)= (n/2)[first term + last term]
= (n/2)[a + (a+[n - 1]d)
= n(a + [n - 1]d)
Seri Geometris.
13. Sn = a + a r + a r 2 + a r 3 +...+ a r n-1 = a (1 - r n)/(1 - r)Integer Series.
14. 1 + 2 + 3 + ... + n = (1 / 2) n (n + 1)15. 1 2 + 2 2 + 3 2 + ... + n 2 = (1 / 6) n (n + 1)(2n + 1)
16. 1 3 + 2 3 + 3 3 + ... + n 3 = [ (1 / 2) n (n + 1) ] 2
3. faktorial, Permutasi dan Kombinasi.
1. n factorial = n ! = n.(n-1).(n-2)...2.12. Permuatations dari n objek yang diambil r pada saat itu:
n P r = n ! / [ (n - r) ! ]
3. Kombinasi dari n objek yang diambil r pada saat itu:
n C r = n ! / [ r ! (n - r) ! ]
4. Ekspansi Binomial (Formula).
1. Jika n adalah bilangan bulat positif, kita dapat memperluas (x + y) n sebagai berikut(X + y) n = n C 0 x n + n C 1 x n - 1 y + n C 2 x n - 2 y 2 + ... + n C ny n
Istilah umum n C r diberikan oleh
5. Rumus trigonometri.
Sum / Perbedaan Rumus Angles.
1. cos (A + B) = cos A cos B - dosa A sin B2. cos (A - B) = cos A cos B + sin sin A B
3. sin (A + B) = sin A cos B + cos A sin B
4. sin (A - B) = sin A cos B - cos A sin B
5. tan (A + B) = [tan A + tan B] / [1 - tan A tan B]
6. tan (A - B) = [tan A - tan B] / [1 + tan A tan B]
Sum / Perbedaan Rumus Fungsi trigonometri.
7. sin A + sin B = 2 sin [(A + B) / 2] cos [(A - B) / 2]8. sin A - sin B = 2 cos [(A + B) / 2] sin [(A - B) / 2]
9. cos A + cos B = 2 cos [(A + B) / 2] cos [(A - B) / 2]
10. cos A - B = cos - 2 sin [(A + B) / 2] sin [(A - B) / 2]
Produk rumus fungsi trigonometri.
11. 2 sin A cos B = sin (A + B) + sin (A - B)12. 2 cos A sin B = sin (A + B) - sin (A - B)
13. 2 cos A cos B = cos (A + B) + cos (A - B)
14. 2 sin A sin B = - cos (A + B) + cos (A - B)
Beberapa Rumus rangkap.
15. sin 2A = 2 sin A cos A16. cos 2A = cos 2 A - sin 2 A = 2 cos 2 A - 1 = 1-2 sin 2 A
17. sin 3A = 3 sin A - 4 sin 3 A
18. cos 3A = 4 cos 3 A - 3 cos A
Daya Mengurangi Rumus.
19. sin 2 A = (1/2) [1 - cos 2A]20. cos 2 A = (1/2) [1 + cos 2A]
Fungsi hiperbola
sinh2 x = ½cosh 2x — ½
cosh2 x = ½cosh 2x + ½
sinh3 x = ¼sinh 3x — ¾sinh x
cosh3 x = ¼cosh 3x + ¾cosh x
sinh4 x = 3/8 - ½cosh 2x + 1/8cosh 4x
cosh4 x = 3/8 + ½cosh 2x + 1/8cosh 4x
Basic Formulae
21. Sin² x + Cos² x = 1
22. 1 + tan² x = sec² x
23. 1 + cotan² x = cosec² x
Trigonometrical ratios for sum and difference
24. Sin (a+b) = sin a.cos b + cos a.sin b
25. Sin (a-b) = sin a.cos b - cos a.sin b
26. Cos (a+b) = cos a.cos b - sin a.sin b
27. Cos (a-b) = cos a.cos b + sin a.sin b
28. Tan (a+b) = (tan a + tan b)/(1- tan a.tan b)
29. Tan (a-b) = (tan a - tan b)/(1+ tan a.tan b)
30. Cot (a+b) = (cot a. cot b - 1)/(cot a + cot b)
31. Cot (a-b) = (cot a. cot b + 1)/(cot a - cot b)
32. Sin (a+b).Sin (a-b) = sin^2 a - sin^2 b = Cos^2 b - cos^2 a
33. Cos (a+b).cos (a-b) = cos^2 a - sin^2 b = cos^2 b - sin^2 a
34. Sin 2a = 2sin a. cos a = (2 tan a)/(1+tan^2 a)
35. Cos 2a = cos^2 - sin^2 a = 1 - 2 sin^2 = 2cos^2 a - 1 = (1- tan^2 a)/(1+ tan^2 a)
36. Tan 2a = (2tan a)/(1- tan^2 a)
37. Tan (a/2) = (1-cos a)/sin a
38. Cot (a/2) = (1+cos a)/sin a
39. Tan^2 (a/2) = (1-cos a)/(1+cos a)
40. Cot^2 (a/2) = (1+cos a)/(1- cos a)
Sum and Difference into products
41. Sin A + sin B = 2 sin 1/2(A+B) Cos 1/2 (A-B)
42. Sin A - sin B = 2 cos 1/2(A+B) Sin 1/2 (A-B)
43. Cos A + Cos B = 2 cos 1/2(A+B) Cos 1/2 (A-B)
44. Cos A - Cos B = -2 sin 1/2(A+B) sin 1/2 (A-B)
45. Tan A + Tan B = [Sin (A+B)]/(Cos A.Cos B)
46. Tan A -Tan B = [Sin (A-B)]/(Cos A.Cos B)
47. Cot A + Cot B = [Sin (B+A)/(Sin A.Sin B)]
48. Cot A - Cot B = [Sin (B-A)/(Sin A.Sin B)]
Product into Sum or Difference
49. 2Sin A.cos B = Sin (A+B) + Sin (A-B)
50. 2Cos A.Sin B = Sin (A+B) - Sin (A-B)
51. 2Cos A.Cos B = Cos (A+B) + Cos (A-B)
52. 2Sin A. Sin B = -Cos (A+B) + Cos (A-B)
Triple Angles
Sin (a+b+c) = Sin a Cos b Cos c + Cos a Sin b Cos c + Cos a Cos b Sinc + Sin a Sin b Sin c
Cos (a+b+c) =Cos a Cos b Cos c - cos a Sin b Sin c - Sin a Cos b Sin c - Sin a Sin b Cos c
Tan (a+b+c) = Sin (a+b+c) / Cos (a+b+c)
Sin 3a = 3.Sin a - 4 Sin^3 a
Cos 3a = 4.Cos^3 a - 3.Cos a
Tan 3a = (3 Tan a - Tan^3 a)/(1 - 3.Tan^2 a)
Sin a.Sin (60-a).Sin (60+a) = (Sin 3a)/4
Cos a.Cos(60-a).Cos(60+a) = (Cos 3a)/4
Product dan Sum of the sin and cosine Series
Cos a. Cos 2a. Cos 4a. Cos 8a....Cos 2^(n-1) = [Sin ((2^n).a)] / (2^n .Sin a)
Sin a + Sin (a+b) + Sin (a+2b) + ... n terms = Sin [a+(n-1)b]. [Sin (n .b/2)]/(sin (b/2))
Cos a+ Cos (a+b) + Cos (a+2b) + ... n terms = Cos [a+(n-1)b]. [Sin (n .b/2)]/(sin (b/2))
Sin phi/m.Sin 2phi/m.Sin 3phi/m....Sin (m-1)phi/m = [m/ 2^(m-1)]
1/(sina.sin2a) +1/(sin2a.sin3a) +...+ 1/(sin an.sin(n+1)a)=[cot a - cot (n+1)a]/sin a
1/(cos a-cos3a)+1/(cos a-cos5a)+...+1/(cos a-cos(2n+1)a = [cot a-cot (n+1)a]/2sina
1/(cos a+cos3a)+1/(cos a+cos5a)+...+1/(cos a+cos(2n+1)a =[tan(n+1)a- tan a]/2sina
sec(x) = 1/cos(x),
csc(x) = 1/sin(x),
cot(x) = 1/tan(x),
tan(x) = sin(x)/cos(x),
cot(x) = cos(x)/sin(x).
sin(-x) = -sin(x),
cos(-x) = cos(x),
tan(-x) = -tan(x),
cot(-x) = -cot(x),
sec(-x) = sec(x),
csc(-x) = -csc(x).
sin(/2-x) = cos(x),
cos(/2-x) = sin(x),
tan(/2-x) = cot(x),
cot(/2-x) = tan(x),
sec(/2-x) = csc(x),
csc(/2-x) = sec(x).
sin(/2+x) = cos(x),
cos(/2+x) = -sin(x),
tan(/2+x) = -cot(x),
cot(/2+x) = -tan(x),
sec(/2+x) = -csc(x),
csc(/2+x) = sec(x).
sin(-x) = sin(x),
cos(-x) = -cos(x),
tan(-x) = -tan(x),
cot(-x) = -cot(x),
sec(-x) = -sec(x),
csc(-x) = csc(x).
sin(+x) = -sin(x),
cos(+x) = -cos(x),
tan(+x) = tan(x),
cot(+x) = cot(x),
sec(+x) = -sec(x),
csc(+x) = -csc(x).
sin(2+x) = sin(x),
cos(2+x) = cos(x),
tan(2+x) = tan(x),
cot(2+x) = cot(x),
sec(2+x) = sec(x),
csc(2+x) = csc(x).
sin2(x) + cos2(x) = 1,
tan2(x) + 1 = sec2(x),
1 + cot2(x) = csc2(x).
sin(x+y) = sin(x)cos(y) + cos(x)sin(y),
cos(x+y) = cos(x)cos(y) - sin(x)sin(y),
tan(x+y) = [tan(x)+tan(y)]/[1-tan(x)tan(y)],
cot(x+y) = [cot(x)cot(y)-1]/[cot(x)+cot(y)].
sin(x-y) = sin(x)cos(y) - cos(x)sin(y),
cos(x-y) = cos(x)cos(y) + sin(x)sin(y),
tan(x-y) = [tan(x)-tan(y)]/[1+tan(x)tan(y)],
cot(x-y) = [cot(x)cot(y)+1]/[cot(y)-cot(x)].
sin(2x) = 2 sin(x)cos(x),
cos(2x) = cos2(x) - sin2(x),
= 2 cos2(x) - 1,
= 1 - 2 sin2(x),
tan(2x) = [2 tan(x)]/[1-tan2(x)],
cot(2x) = [cot2(x)-1]/[2 cot(x)].
|sin(x/2)| = sqrt([1-cos(x)]/2),
|cos(x/2)| = sqrt([1+cos(x)]/2),
|tan(x/2)| = sqrt([1-cos(x)]/[1+cos(x)]),
tan(x/2) = [1-cos(x)]/sin(x),
= sin(x)/[1+cos(x)] sin(x)cos(y) = [sin(x+y) + sin(x-y)]/2,
cos(x)sin(y) = [sin(x+y) - sin(x-y)]/2,
cos(x)cos(y) = [cos(x-y) + cos(x+y)]/2,
sin(x)sin(y) = [cos(x-y) - cos(x+y)]/2.
sin(x) + sin(y) = 2 sin[(x+y)/2]cos[(x-y)/2],
sin(x) - sin(y) = 2 cos[(x+y)/2]sin[(x-y)/2],
cos(x) + cos(y) = 2 cos[(x+y)/2]cos[(x-y)/2],
cos(x) - cos(y) = -2 sin[(x+y)/2]sin[(x-y)/2],
tan(x) + tan(y) = sin(x+y)/[cos(x)cos(y)],
tan(x) - tan(y) = sin(x-y)/[cos(x)cos(y)],
cot(x) + cot(y) = sin(x+y)/[sin(x)sin(y)],
cot(x) - cot(y) = -sin(x-y)/[sin(x)sin(y)].
[sin(x)+sin(y)]/[cos(x)+cos(y)] = tan[(x+y)/2],
[sin(x)-sin(y)]/[cos(x)+cos(y)] = tan[(x-y)/2],
[sin(x)+sin(y)]/[cos(x)-cos(y)] = -cot[(x-y)/2],
[sin(x)-sin(y)]/[cos(x)-cos(y)] = -cot[(x+y)/2],
[sin(x)+sin(y)]/[sin(x)-sin(y)]
= tan[(x+y)/2]/tan[(x-y)/2]cotan (α + β) = (cot α.cot β - 1)/ (cot α + cot β)
cotan (α - β) = (cot α.cot β + 1)/ (cot β - cot α)
cosec (α + β) = (sec α.csc α.sec β.csc β) / (sec αcsc β + csc α.sec β)
cosec (α - β) = (sec α.csc α.sec β.csc β) / (sec αcsc β - csc α.sec β)
sec (α + β) = (sec α.csc α.sec β.csc β) / (csc α.csc β + sec α.sec β)
sec (α - β) = (sec α.csc α.sec β.csc β) / (csc α.csc β - sec α.sec β)
sec (α + β) = (sec α.sec β) / (1 - tan α.tan β)
sec (α - β) = (sec α.sec β) / (1 + tan α.tan β)
cosec (α + β) = (cosec α.cosec β)/(cotan α + cotan β)
cosec (α - β) = (cosec α.cosec β)/(cotan α - cotan β)
Tan (a+b+c) = {tan a +tan b + tan c – tan a tan b tan c}/{1-tan a tan b – tan b tan c – tan c tan a}
Identitas
Sinus
1.
sin α = ±
{√1-cos²α}
2.
sin α = ±
tan α/{√1+tan²α}
3.
sin α =
1/csc α
4.
sin α = ±
{√sec²α – 1}/sec α
5.
sin α = ±
1/{√1+cot²α}
Identitas cosinus
1. cos
α = ±{√1-sin²α}
2. cos
α = ±1/{√1+tan²α}
3. cos
α = 1/sec α
4. cos
α = ± {√csc²α-1}/csc α
5. cos
α = ± {cot α}/{√1+cot²α}
Identitas tangent
1. tan
α = ±{√sec²α-1}
2. tan
α = ± 1/{√csc²α-1}
3. tan
α = 1/cot α
4. tan
α = ± sin α/{√1-sin²α}
5. tan
α = ± {√1-cos²α}/cos α
Identitas cosecant
1. csc
α = ± {√1+cot²α}
2. csc
α = ± 1/{√1-cos²α}
3. csc
α = 1/sin α
4. csc
α = ± {√1+tan²α}/tan α
5. csc
α = ± sec α/{√sec²α-1}
Identitas secant
1. sec
α = ± {√1+tan²α}
2. sec
α = ± 1/ {√1-sin²α}
3. sec
α = ± 1/cos α
4. sec
α = ± {√1+cot²α}/cot α
5. sec
α = ± csc α/{√csc²α-1}
Identitas cotangent
1. cot
α = ±{√csc²α-1}
2. cot
α = ± 1/{√sec²α-1}
3. cot
α = 1/tan α
4. cot
α = ±{√1-sin²α}/sin α
5. cot
α = ± cos α/{√1-cos²α}
aturan
sinus
sin
α/A = sin β/B = sin γ/C
aturan
cosinus
a²
= b² + c² - 2bc cos α → cos α = { b² + c² - a²}/2bc
b²
= a² + c² - 2ac cos β → cos β = {a² + c² - b²}/2ac
c²
= a² + b² - 2ab cos γ → cos γ = {a² + b² - c²}/2ab
aturan
tangent
[a-b]/[a+b]
= [tan{½(α-β)}]/[tan{½(α+β)}]
[b-c]/[b+c]
= [tan{½(β-γ)}]/[tan{½( β-γ)}]
[a-c]/[a+c]
= [tan{½(α-γ)}]/[tan{½(α+γ)}]
Formula
moolweid’s
[a+b]/c
= [cos{½(α-β)}]/ [sin{½}γ]
1.
Pembuktian bahwa 1+cot²α = cosec²α,
1+(cos²α/
sin²α) = cosec²α,
(sin²α/sin²α)+(cos²α/
sin²α) = cosec²α,
(sin²α+cos²α)/
(sin²α) = cosec²α,
1/
sin²α = cosec²α
2. Pembuktian
bahwa cot α = 1/tan α
Tan α = sin
α/cos α sedangkan cot α = cos α/sin α, jadi
= 1/{sin
α/cos α} = 1/tan α
3. Pembuktian
bahwa 1
+ tan²α = sec²α,
cos²α
+ sin²α = 1,
{cos²α
+ sin²α}/ cos²α = 1/ cos²α,
(cos²α/cos²α)+(sin²α/
cos²α) = 1/ cos²α,
{1 + tan²α} = sec²α
Tan (a+b+c) = tan
{(a+b)+c} = {tan (a+b) + tan c}/{1 - tan(a+b)tanc} = {(tan a + tan b/1 – tan
a.tan b) + tan c}/{1 – (tan a + tan b/1 – tan a.tan b)tan c} = {(tana + tanb +
tanc – tana.tanb.tanc)/(1 – tan a.tan b)}/ {(1 – tan a.tan b – tana.tanc –
tanb.tanc)/(1 – tan a.tan b)},
Tan (a+b+c) = (tana +
tanb +tan c - tana tanb tanc)/ (1 – tan a.tan b – tana.tanc – tanb.tanc)Cot (α+β+ς) = {Re (i+cot α)(i+cot β)(i+cot c)}/{Im (i+cot α)(i+cot β)(i+cot c)}
= {cotα.cotβ.cotς – cotα – cotβ – cotς} / {cotα.cotβ + cotα.cotς + cotβ.cot ς – 1}
Tidak ada komentar:
Posting Komentar